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Summary. This paper presents a new algorithm for the detection 
of channel openings and closures from noisy current signals, 
especially for the correct generation and interpretation of open- 
time and closed-time histograms. The Hinkley detector is a non- 
linear off-line jump detection algorithm from the field of fault 
detection. Here, an improved version, the higher-order Hinkley 
detector H.O.H.D., is developed. A general description of the 
sensitivity of a detector is introduced by the time resolution tre~. 
This allows a comparison of the nonlinear detectors with the 
standard threshold detectors preceded by a low-pass filter for 
noise suppression. By means of application to simulated and real 
data, the performance of the detection algorithms is investigated. 
The higher-order Hinkley detector gave the best results with 
respect to correct reconstruction of the event length, to a small 
amount of missed brief events as well as to the ability to achieve 
short time resolution without pretending false events, especially 
in the presence of colored noise. 
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Introduction 

The patch-clamp technique (Sakmann & Neher, 
1983; Hedrich & Schroeder, 1989) is of great impor- 
tance for the investigation of transport through bio- 
logical membranes. It provides the facility of mea- 
suring the current through a single channel protein 
and of investigating the dependence of current and 
gating dynamics on membrane voltage and on the 
concentrations of ions and various agents. 

There are three, structurally different methods 
of analyzing channel openings and closures. 

(1) The direct way is a jump-detection algo- 
rithm, normally a Bessel filter with subsequent 
threshold detection. It results in open-time and 
closed-time histograms. Until now this technique 
was restricted to events longer than about 100/xsec. 

(2) For the time scale of 10 to 100 /xsec the 
analysis of beta functions (FitzHugh, 1983) was ap- 
plied (Yellen, 1984; Klieber, 1990). Short unde- 
tected closures (gaps) can be recognized as they 
distort the open channel amplitude histogram which 
is no longer a Gaussian distribution, but an asym- 
metric beta function. 

(3) With even faster events, the beta functions 
become again very similar to Gaussian amplitude 
distributions. Now, the information about fast 
switching can be gained only from a comparison of 
the noise of the open and the closed level. Analysis 
based on this effect is known as investigation of the 
open channel excess noise (Heinemann & Sigworth, 
1988). 

Although methods (2) and (3) are applicable to 
fast-blocking kinetics, the direct method (1) is pref- 
erable, whenever possible. The results are several 
time constants and amplitude factors of the expo- 
nentials, evaluated from the dwell-time histograms. 
Thus, they comprise more information than the two 
parameters of a beta function or just the variance of 
the excess noise. In the following we deal with the 
problem of extending the temporal resolution of the 
direct method (1). 

Fig. 1A shows a typical low-noise time series of 
pipette current measured with our fast setup at a 
sampling frequency of 100 kHz. The slow switching 
between four levels of current indicates that at least 
three channels are within the patch. Besides this 
slow switching, short gaps of about 30/~sec dura- 
tion and some short openings can be recognized. 
This paper shows how to reach the aim of resolving 
these fast gating processes by the direct method (1). 

For the construction of dwell-time histograms, 
algorithms are required for the correct identification 
of open times and closed times in the presence of 
inevitable background noise. The problem can be 
described as follows: A signal jumps between two 
or more equally spaced levels which are constant 
and known a priori. But the signal is corrupted by 
additional noise, which may roughly be considered 
as Gaussian white noise. From this noisy signal the 
original jumps are to be detected. 

In the field of technical signal analysis and fault 
detection, many engineers and statisticians are con- 
cerned with similar problems (Basseville, 1986). 
For the problem characterized above, the appropri- 
ate solution is the Hinkley detector (Page, 1954, 
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Fig. 1. (A) Time series (8,000 samples) of real patch-clamp data 
from tonoplast vesicles of Chara. Original raw data, prefiltered 
with an antialiasing Bessel filter with a cutoff frequency ( -3dB)  
of 25 kHz and sampled at 100 kHz. Signal-to-noise ratio is 
about 4. (B) Closed-time histogram obtained with the H.O.H.D. 
from the whole record comprising 6,000,000 samples. The time 
axis of the event length contains bins 1 (10 /~sec) to 120 (1.2 
msec). The double-exponential fit reveals two time-constants: 48 
/~sec and 233 tzsec. 

1955; Hinkley, 1971), sometimes called likelihood 
ratio test or cumulative sum algorithm (Nikiforov, 
i986). Basseville and Benveniste (1986) give a com- 
prehensive review of methods for detection of 
changes in signals and systems. 

By a combination of experimental noise reduc- 
tion (excised patch, coated pipettes), fast sampling 
and nonlinear off-line detection by the higher-order 
Hinkley detector (H.O.H.D.), presented in this pa- 
per, we have extended the resolution of the direct 
approach (1) to 10-20 txsec. This opens the possibil- 
ity to access the interesting gating phenomena in the 
range shorter than 100 ~sec. It might be possible to 
resolve the blocked state of a calcium channel with 
a lifetime of 60 /~sec, suggested by Pietrobon, 
Prod'hom and Hess (1988), and the fast gating pro- 
cesses involved in the blockage of the potassium 
channel by thallium (Draber, Schultze & Hansen, 
1991), cesium (Klieber, 1990) or sodium (Bertl, 
1989). 

Four Alternative Methods for Reconstruction of 
Single Channel Events (Jump Detection) 

Noise hinders the proper detection of jumps in the 
current of patch-clamp recordings. We compare 

four algorithms with respect to their ability to re- 
construct the original channel signals from noisy 
records. 

In the following calculations zt (t = O, 1, 2 . . . . .  
N) stands for the noisy raw data delivered by the 
patch-clamp amplifier or by the simulated model. 
The detection of an opening requires the determina- 
tion of a transition of z~ from/z0 (closed state) to/xl 
(open state). Without loss of generality we assume 
/~1 > /z0. Jumps to a lower level are treated in the 
same way but with inverted signs. As zt is noisy, we 
cannot look at individual values of zt, but have to 
use something like a weighted time average. Differ- 
ent averaging procedures are provided by the four 
filter algorithms described below. 

All these algorithms possess a "turning knob" 
which influences the sensitivity (the thresholds X or 
h 8 for the nonlinear Hinkley detectors and the cut- 
off frequency f3dB for the linear low-pass methods). 
A suitable parameter for the quantitative compari- 
son of sensitivity is defined under the condition of 
no noise. The time resolution tres of a detector, mea- 
sured in units of sampling steps, is the length of the 
shortest event which is detected by the individual 
detector. The following subsections establish the 
connection between the specific "turning knob" of 
the detector and the general description of the sen- 
sitivity by means of the time resolution. It is possi- 
ble to compare the behavior of the different types of 
detectors, after they are adjusted to have the same 
time resolution. 

THE HINKLEY DETECTOR 

The operation of the Hinkley-detector algorithm is 
based on the construction of a series of test values 
gt in the following way: 

First, set go := 0. 
Now the time series z~ is scanned by recursively 

calculating the cumulative sum 

gt = gt-1 + Zt - 2 (1) 

So far this is a linear operation on zt. Nonlinearity is 
introduced by setting the gt values calculated by Eq. 
(1) immediately to zero if they become negative 

g t = m a x ( g t ,  O ) = { O t  
i f  gt >- 0 

(2) 
i f g t ~  0 

before applying Eq. (1) again. 
The behavior of the test value gt is depicted in 

Fig. 2. As long as the channel is closed, the mean 
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Fig. 2. Detection of a jump in the noisy time series zt(+) by 
means of the test value series g, ((3) crossing the threshold X. The 
broken line shows the mean value of z,jumping from ~ to/x~, but 
this signal is, of course, unknown to the detector. The choice 
/z0 + p~ = 0 is not a prerequisite for the algorithm. (modified from 
Schultze, 1992) 

jump is obvious: it definitely starts to grow (Eq. 
(4)). It is now intuitively clear how to exploit this 
behavior for an automated jump detection. Setting a 
threshold )t for the gt values, allows us to distin- 
guish the jumps of z, from the effects of noise. After 
jump detection, the moment of the jump is deter- 
mined by backward calculation. The known time 
course of the test value gt provides a good means of 
estimating the exact moment of the jump. In Fig. 2 
gt equals zero directly before the jump occurs. It is 
therefore a natural way to estimate the jump mo- 
ment to be the last moment before the jump detec- 
tion with g~ = 0. This possibility of estimating a time 
t = j of the jump which lies before the detection is 
an advantage of the off-line application. 

After jump detection the algorithm starts again 
with gj := 0 at time j with inverse signs, as now a 
jump from/xt down So/x0 is to be detected. 

The threshold X determines the sensitivity of 
the detector which can also be described in terms of 
the time resolution tres, the general parameter of 
sensitivity. The relation between tr~s and X is ob- 
tained from the response of the detector to a noise- 
free opening of length tres. Equation (4) states that a 
noise-free opening from u until u + tr~s lets the test 
value gt grow up to 

/zl -- / z0 .  Ires (5) g,+tro~ = 2 

value ofzt is/x0. Insertion ofzt =/x0 in Eq. (1) shows 
that gt decreases by being smaller than gt-~ (txl > 
/x0) and therefore reaches gt = 0, where it remains 
stationary because of Eq. (2). Due to noise, how- 
ever, it is possible that g rises for individual samples 
to positive values, if zt > (/x0 + /x0/2. 

After the jump, when the channel has opened, 
say at time t = u, the mean value of zt is/xl. For the 
noise-free case zt = ~ the test value g starts to rise 
as  

g t=  gt_l + (tzl iXo + tx,) 
2 

(IX1- i~o~ 
= gt-I + \ - ~ /  

Ix1 - tXo . (t - u). 
g t=  2 

(3) 

(4) 

Setting h to this value 

)t =/xl - /x0 
2 "tres (6) 

leaves all shorter events than tres undetected and all 
longer events detected. 

It has to be kept in mind that a shorter time 
resolution favors false detections. That means that 
a lower threshold X can be exceeded more easily 
"by accident" even though no jump has occurred. 
A reliable adjustment of the sensitivity of the detec- 
tor is discussed below in the section on False 
Alarms. 

With more than one channel under examination 
the algorithm is not much more complicated. One 
has to look simultaneously for upward and down- 
ward jumps. 

Figure 2 shows the test value gt as circles. The 
broken line gives the ideal, undisturbed jump of z~ 
which the detector actually does not know. Before 
the jump occurs, the test value gt is mostly zero and 
only sometimes obtains a small positive value. The 
change of the behavior of the test value after the 

HIGHER-ORDER HINKLEY DETECTOR 

In terms of the frequency domain, the detectors are 
used in order to cut off the high frequency noise. 
The Hinkley detector is based on the first-order dif- 
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ference equation (1). This leads to a weak attenua- 
tion of the higher frequencies with a f - i  slope. 

As known from Bessel filters, the performance 
gets better if the order is increased, normally to 
eight. Thus, we developed the higher-order Hinkley 
detector. It differs from the Hinkley detector be- 
cause it does not use the simple cumulative sum 
(first-order integral) of the signal but the eighth-or- 
der integral (or cumulative sum). The high fre- 
quency attenuation is much stronger, roughly with a 
f-8 slope. The benefit of this modification becomes 
clear in the section Example of Simulation and De- 
tection. The upward and downward bending traces 
of the test values g~ are smoother in the case of the 
H.O.H.D. than gt of the standard HINKLEY de- 
tector. Equations (1) and (2) are replaced by the 
eighth-order cumulative sum calculated by the fol- 
lowing equations 

/ + \ 
g~ ~-" g ] - I  q- /Zt I'Ll) 

2 
g2 = g2_, + g] 

g~ = g~_, + g2 

gt 4 = gt4_, + g~ 
g~ = g~ , + g4 

g6 = g6_, + g~ 

g7 = gT-, + g6 
g8 = g8_, + g7 

and a synchronous cutting to zero 

(o'  fg >0 
g~ = if g] < 0 

(7) 

(i = 1, 2, 3 . . . . .  8) (8) 

A jump is detected when the eighth-order cu- 
mulative sum gt s crosses a threshold X s which deter- 
mines the sensitivity of the H.O.H.D. The jump 
moment j is obtained by backward estimation as in 
the case of the Hinkley detector described above. 
For a given time resolution tres, the threshold X 8 for 
g8 has to be the maximum of the g8 values occurring 
as response to a noise-free opening event of length 
tres and amplitude/xl - /z0. 

We did not try other orders than eight because 
this seemed to us to be a good compromise between 
strong cutoff of high frequencies and acceptable 
computational complexity. 

FIRST-ORDER LOW PASS WITH THRESHOLD 
DETECTOR 

As mentioned in the introduction, the common 
method of noise suppression is low-pass filtering, 

mostly applied to analog data before sampling and 
storing. Afterwards, the detection of jumps is sim- 
ply accomplished by half-amplitude threshold anal- 
ysis (Colquhoun & Sigworth, 1983), observing the 
filtered signal exceeding the thresholds halfway be- 
tween the mean levels. 

The first-order filter used for the comparison 
with the Hinkley detectors is a digital low-pass filter 
because sampled data (simulated or real) are ana- 
lyzed. As the threshold analysis works in the time 
domain, the digital low pass must have the same 
impulse-response as the analog low pass. There- 
fore, we applied the invariant impulse-response 
method (Antoniou, 1979) for the calculation of the 
digital low pass. 

The mentioned "turning knob" for the adjust- 
ment of the sensitivity is the frequency f3dB of 3dB 
attenuation. It is related to the time resolution tres 
(the duration of a noise-free opening reaching the 
half-amplitude threshold) by the equation 

ln(2) 0.11 
f3dB = fs " 2~r- ~es ~ f~" tre----~- (9) 

with f~ being the sampling frequency, and tres given 
in units of sampling steps as usual. 

As we show below, the low-pass method tends 
to produce many more "false alarms" than the 
Hinkley detector does. This bad performance of the 
first-order low pass can be avoided by using a 
higher-order filter. 

BESSEL FILTER WITH THRESHOLD DETECTOR 

As pointed out by Colquhoun & Sigworth (1983) the 
eight-pole Bessel filter is an approximation of the 
Gaussian filter. It is commonly used for jump detec- 
tion because it exhibits a linear phase behavior in 
the passband and a very smooth step response. The 
price for this advantage is a soft transition between 
passband and cutoff in the frequency domain. This 
is a good deal for filtering of patch-clamp data be- 
cause a linear phase response is necessary in order 
to conserve the pulse shape, whereas the frequency 
spectrum is of minor interest. 

The relationship between the frequency f3dB of 
3dB attenuation and the time resolution tres (which 
is the length of a square pulse reaching the thresh- 
old of half its original amplitude after filtering) is 
given by 

0.18 
f3dB = fs " - -  (10) 

tres 

with the sampling frequency f~ and the time resolu- 
tion tres given in units of sampling intervals. 
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Fig. 3. Example  of  s imulat ion and detection. 
Data are generated by random switching of a 
two-state model  (Eq. (11)): koc = 0.05, kco = 

0.03, ix 0 = - 0 . 9 ,  ~ = 0.9. 300 samples  with 
super imposed  noise o- = 1 SNR = 1.8. 
Temporal  resolution o f  the detectors  tr~s = 3. 
(A) O R I G I N A L  and noisy  time series. The 
noisy time series (dots) is also given as 
background in traces B, C, D, E. (B) Time 
series recons t ruc ted  by the H I N K L E Y  
detector.  Notice the missed  event  at sample 
85. The short  upward and downward  bending 
traces are the series of  test  values g,. For this 
plot we divided g, by X = 2.7. (C) Time series 
reconst ructed  by the higher-order  Hinkley 
detector.  The series of  test  values g ~ / X  s is 
scaled with X s = 1077.3. It is smoother  than 
g / X  in B. (D) First-order LOW-PASS filtered 
time series. The signal is reconst ructed  by 
threshold analysis .  Notice that  the filtered 
signal c rosses  the threshold five t imes at 
sample 230, which produces  four  additional 
short  events .  (E) Time series reconst ructed  by 
B E S S E L  filter and threshold detection. 

We use the Bessel filter coefficients proposed 
by Antoniou (1979) who also gives an example of 
the transformation of  a Bessel filter by the invariant 
impulse-response method. The threshold analysis is 
performed in the same way as in the case of  the 
first-order low pass. 

Example of Simulation and Detection 

For  the following simple example we simulate the 
switching of a channel with one open and one 
closed state: 

koc 
o .  - c (11) 

kco 

The rate constants koc = 0.05, kco = 0.03 refer to the 
transition probability per sampling interval. 

The  randomly switching channel is simulated 

by means of  a random generator which decides 
about jumps from one state to another  with a proba- 
bility according to the rate constants ko~., kco. As- 
signing the levels Ix0, /Xl of  pipette current to the 
closed and the open state, respectively, results in a 
noise-free signal called " O R I G I N A L "  consisting of 
discrete jumps between these two levels. The solid 
line in Fig. 3A shows the ORIGINAL time series 
jumping between/x0 = - 0 . 9  and/x~ = 0.9. The half- 
jump magnitude is p = (/Xl - /x0)/2 = 0.9. Addition 
of  white Gaussian noise with standard deviation 
o- = 1.0 yields the noisy time series which is dis- 
played as dots in Fig. 3A. The signal-to-noise ratio, 
defined as SNR = 2p/cr, is 1.8. 

The simulated noisy data is fed into the detec- 
tors in order  to reconstruct  the original signal. The 
parameters of  the four algorithms are adjusted to 
give the same time resolution. 

The performance of  the H I N K L E Y  detector  is 
demonstrated in Fig. 3B. The solid line switching 
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between two levels, gives the detected events. The 
noisy line flickering upward and downward around 
zero shows the behavior of the test value g/h (Eqs. 
(i) and (2)). The scaled time series gt/h is displayed 
in order to use "1"  as a reference for detection. 
Figure 3B shows that gt goes upward until the up- 
ward jump is detected at sample 20. After the jump 
detection, the algorithm starts with inverted signs 
from the estimated jump moment. Therefore the gt 
tails are now bent downward until a jump to the 
closed level/x0 is detected at sample 45. Two events 
are missed as gt does not reach the threshold level. 
The line of detected events shows transients prior 
to detection because the time of a jump is obtained 
from backward calculation. 

The higher-order Hinkley detector (H.O.H.D.) 
works quite similarly: The upward and downward 
tails in Fig. 3C of the test value gt 8 are smoother 
than in Fig. 3B. Another difference is the successful 
jump detection at sample 85. 

The first-order LOW PASS (Fig. 3D) and the 
eighth-order BESSEL filter (Fig. 3E) create a fil- 
tered time series which is depicted as a noisy solid 
line. The subsequent threshold analysis yields the 
reconstructed time series (solid signal switching be- 
tween the two levels). The arrows in Fig. 3D indi- 
cate false alarms of the first-order LOW PASS. 
There are also missed events. The BESSEL algo- 
rithm resolves the same events as the H.O.H.D., 
but the duration (dwell-time) of the openings is esti- 
mated more precisely by the H.O.H.D., as shown 
by a comparison of the, reconstructed signals of Fig. 
3C and E with the ORIGINAL signal in Fig. 3A. 

This short time series is a simple example be- 
cause, in our experience, the case with only one 
channel is seldom found in measured data. Also, the 
simplemodel with only one closed state is not real- 
istic. Normally, at  least several closed states exist 
with different lifetimes and sometimes also different 
open states. Nevertheless, the example of Fig. 3 
reveals typical features of the detectors which are 
essential for discussing which of the detectors is the 
best for reconstruction of patch-clamp data: the oc- 
currence of false alarms, the missing of brief events, 
and the reliability of event length estimation. These 
features are examined in greater detail in the follow- 
ing sections. 

Effects of the Selected Time Resolution on the 
Performance of the Detectors 

In a real patch-clamp signal, noise cannot be totally 
avoided. Therefore, the question arises what time 
resolution of a detection algorithm can be achieved 
at a given signal-to-noise ratio. 

In order to compare the ability of the detectors 
to evaluate the correct number and duration of 
channel openings, a signal with constant open and 
closed times was analyzed. The adequate signal is a 
square wave with a closed time of 40 which is long 
enough to be always detected in the following anal- 
ysis. The open time of the periodic signal is 20 sam- 
piing units. The total length was 10,000 samples, 
thus comprising 166 opening events. The half-jump 
magnitude p was 0.75 and the white Gaussian noise 
had a standard deviation o- of 1.0. This signal was 
analyzed by the four detection algorithms. We var- 
ied their time resolution between tres = 2 and tres = 
32 and studied the influence on the resulting open- 
time histograms (Fig. 4). The resolved open times 
ought to be equal to 20, the fixed open time of the 
original square wave. This would result in an ideal 
open-time histogram with a single bar of height 166 
at open time 20. 

Column 3 in Fig. 4 shows that the first-order 
low pass has a significantly higher rate of false 
alarms (peaks at open time -~ 1). This is easily un- 
derstood by an inspection of Fig. 3, showing that 
the filtered signal tends to cross the threshold three 
times or more on a falling or rising edge (sample 70 
and 230 in Fig. 3) because it is not smooth enough. 
This is due to the larger amount of high frequencies 
in the filtered signal as compared with the eight-pole 
Bessel filter. Therefore, the first-order low pass is 
excluded from further analysis. 

The comparison of columns 4, 2 and 1 for the 
BESSEL, the H.O.H.D. and the HINKLEY algo- 
rithms reveals only slight differences. The false 
alarms at tres = 2 ,  4 in the upper two rows vanish at 
longer tres = 8, 16. In these two rows, the Hinkley 
detector and the higher-order Hinkley detector 

-show a smaller error of the estimated open time. In 
the last row with tr~ = 32, only a few openings are 
resolved. Most of the openings are missed, because 
their length of 20 sampling units is significantly 
shorter than ~he time resolution. 

False Alarms 

First, the problem of false alarms is addressed. The 
adequate method is a simulation with no open event 
at all. The ORIGINAL signal is constant at the 
closed level. Nevertheless, the detection algorithm, 
assuming a jump magnitude 2 .p ,  may detect some 
jumps originating from the noise superimposed on 
the constant ORIGINAL time series. The signal-to- 
noise ratio and the time resolution are varied and 
the number of detected, i.e., "pretended" events is 
counted. The numbers of false alarms in a time se- 
ries of one million samples are shown in the boxes 
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Fig. 4. Open-time histograms from simulated 
noisy square waves. The signal always has the 
same parameters: 166 openings of length 20, 
SNR = 1.5. The histograms are generated by 
four different detection algorithms. Columns 
from left to right: HINKLEY, H.O.H.D., 
LOW PASS, BESSEL. Rows: time resolution 
changing from 2 at the top to 32 sampling 
units at the bottom. Notice, that at too short 
time resolutions all filters show many false 
events (additional events with open time ~ 1). 
This error vanishes for the HINKLEY, 
H.O.H.D. and BESSEL column at t~e~ ~ 8. 
The bad performance of the LOW-PASS 
algorithm is obvious. For time resolution 32 
which is longer than the opening length (20), 
the four algorithms miss many events. 

tres 
32 

16 

2 

STR= 22~ 

, i I i i t ~. : 

0 . 7  i 114 �89 2'.8 4 S N R  

Fig. 5. Number of false alarms from a time 
series of 1,000,000 points that does not 
contain any opening at all. The numbers in 
each box refer (from top to bottom) to the 
false alarms of the HINKLEY, the H.O.H.D., 
and the BESSEL detector. The condition for 
less than 100 false alarms is nearly the same 
for all detectors: STR > 22 (diagonal line). 

of  Fig.  5. The  S N R  axis s tands  for the qual i ty  of  the 
signal. The  tre~ axis descr ibes  the sens i t iv i ty  of  the 
de tec tors .  I t  is no t  surpr i s ing  that  the n u m b e r  of 
false a la rms  dec reases  with higher  S N R  or longer  
tre~. More  in teres t ing ,  however ,  is the resul t  that  all 

de tec tors  give near ly  the same n u m b e r  of false 
a larms,  de pe nd i ng  on ly  on  the p roduc t  (SNR 2 �9 tre0. 
Because  of  the i m p o r t a n c e  of  this quant i ty ,  we as- 
sign a n e w  n a m e  to it: " s c a l e d  t ime reso lu t ion  
S T R . "  
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STR = SNR 2. tres (12) 

It roughly stands for the amount of information in a 
data sequence of length tres, which can be used by a 
detector for the decision about jumps. 

The results for the Hinkley detector are in good 
agreement with an approximation proposed previ- 
ously (Schultze, 1992) for the false alarm rate of the 
Hinkley detector in the presence of white noise: 

No. of false alarms 
1,000,000 

= exp ( -  2pX] 
o r 2 /  

( tres "SNR2] 
= exp 2 / (13) 
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Fig, 6, Noise spectrum of pipette current from our setup. Below 
1 kHz, the spectral density is quite flat. Between 1 kHz and 20 
kHz it rises as f. Higher frequencies are cut off by the antialias- 
ing Bessel filter. 

The time resolution of the algorithms is set accord- 
ing to the following protocol. Given a time series of 
pipette current with channel activity, the SNR of 
the measurement is determined. Then, we have to 
declare what amount of false alarms we find tolera- 
ble. For instance, we have decided to allow 100 
false alarms per 1,000,000 sampling steps without 
any jumps. With this definition in mind, we inspect 
Fig. 5 and search for the region where the detectors 
give less than 100 alarms. This leads to the diagonal 
!ine in Fig. 5. It divides the tres-SNR plane into two 
parts. Below the line (STR < 22) more than 100 
false alarms occur, above the line (STR > 22) less 
than 100 false alarms are recorded (within 1,000,000 
samples). The rule for the choice of the time resolu- 
tion in the presence of white noise, therefore, is 
common for the three detectors 

tres = 22/SNR 2. (14) 

However, the background noise from the pi- 
pette is not white, but rises as f above 1 kHz. In 
addition, analog filters for antialiasing and noise 
suppression are used before sampling. All this leads 
to a colored noise spectrum which probably varies 
from setup to setup. 

The conditions for the following investigation 
with colored noise are chosen similarly to our ex- 
perimental setup with a cutoff frequency (-3dB) of 
our antialiasing Bessel filter set to 25 kHz. This suffi- 
ciently suppresses the noise at 50 kHz and higher 
frequencies. (The sampling frequency fs is 100 
kHz.) The noise spectrum is shown in Fig. 6. We 
have repeated the above experiment of counting 
false alarms but have started from a series of one 
million samples exhibiting our typical patch-clamp 
spectrum (Fig. 6). Again, the time series contains 

only the noise, not any opening at all. The results 
which are listed in Fig. 7 reveal differences between 
the detectors which no longer allow a general rule 
like Eq. (14) for the choice of the time resolution. 
This choice now has to be based directly on the 
diagram of false alarms (Fig. 7). If, for instance, a 
time series with SNR = 2.8 is to be analyzed, we 
find from Fig. 7 that there are no false alarms when 
tres is chosen 4, 8 or more. At tres = 2 the Bessel filter 
produces 133 false alarms, the Hinkley detector 
50, and the H.O.H.D. only 28. If we tolerate I00 
false alarms within 1,000,000 samples, the choice of 
tres = 2 is okay for the Hinkley detector and the 
H.O.H.D., but not for the Bessel filter. 

Since one is normally interested in the shortest 
possible time resolution, the H.O.H.D. is the pref- 
erable method for this example with SNR = 2.8. 

If, however, the measured time series had a 
worse SNR of about 1.0, the achievable time resolu- 
tion would be about eight sampling steps and the 
lowest rate of false alarms would be produced by 
the Bessel algorithm. With this kind of noisy mea- 
surements, fast processes on a time scale of about 
two or three sampling steps could not be investi- 
gated with any detection algorithm. 

The dependence of the achievable time resolu- 
tion on the specific noise spectrum makes it impos- 
sible to present general numerical results. If the 
reader wants to find out the possible time resolution 
of his/her patch-clamp setup, we therefore recom- 
mend saving a time series without channel activity 
and performing an experiment of counting false 
alarms as described above. A diagram like that in 
Fig. 7 can be constructed from a single, noisy time 
series without any channel opening. These results 
supply a basis for the choice of the time resolution, 
depending on the signal-to-noise ratio. 
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Fig. 7. Number of false alarms from a colored 
noise series of one million samples without 
any opening at all. In contrast to Fig. 5 we 
have used colored noise (see Fig. 6). The 
numbers in each box refer (from top to 
bottom) to the false alarms of the HINKLEY, 
the H.O.H.D., and the BESSEL detector. 
The condition for less than 100 false alarms 
(indicated by the solid and dashed lines) is no 
longer the same for the three detectors. 

Missed Events 

The problem of missing short events is already men- 
100%- tioned when describing Figs. 3 and 4. Again, we use 

periodic square wave signals with long closed times 
and short openings. The time resolution of the de- 90 % -  
tectors is kept constant at tres = 12. The closed time 
of 40 sampling steps is long enough to be always 80 %-  
detected, i.e., no closure is missed. The open time 
is varied between 4 and 24 sampling steps. Thus, 70 %-  
the openings are short enough to be partially missed 
by the detector. The percentage of detected open- 6o %-  
ings is plotted v s .  the real open time in Fig. 8. In the 
absence of noise, the step function (broken line) 50% 
holds because all events longer than tre~ = 12 are 
detected, all shorter events are not. In the presence ~0 % 
of white noise with SNR = 1.41 some events longer 
than tres are missed if the noise makes the event look 30 % 
shorter or flatter. On the other hand, shorter events 
than tr~s may be enhanced by the noise. These ef- 20 % 
fects result in the soft transitions shown in Fig. 8. 
Compared with the HINKLEY technique the 10% 
higher-order BESSEL and H.O.H.D. algorithms of- 
fer a sharper cutoff at the specified time resolution. 0 % 

Estimation of Event Length 

We use square-wave signals like those for Fig. 4 and 
study the influence of the signal-to-noise ratio SNR 
and the time resolution tres on the accuracy of the 
open-time estimation. We take the standard devia- 
tion of the difference between the estimated open 
times and the correct open time as "estimation er- 
ror." This standard deviation is easily obtained 
from the open-time histograms similar to those in 

frnction of 
detected events 

ideo[ [urve 
without noise 

~ " H I N K L E Y  
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i O ~  
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Fig. 8. Fraction of detected events vs. the event length. The 
signal-to-noise ratio is SNR = 1.41, and the time resolution of all 
three detectors is tres = 12 sampling units. In the presence of a 
noise-free signal all events shorter than tres would be missed and 
all events longer than tres would be detected, thus giving the step 
function (broken line) as the ideal result. 

Fig. 4. The results are depicted in Fig. 9 which 
shows the dependence of the estimation error on 
the signal-to-noise ratio. As already mentioned 
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Fig. 9. Standard deviation of open-time estimation error for long 
openings (compared with the time resolution) depending on the 
signal-to-noise ratio. The time resolution of the detectors is 3 or 
6. The HINKLEY and the H.O.H.D. algorithms offer the same 
accuracy, independent of time resolution, because the estimated 
jump time does not depend on the time when the jump is de- 
tected. 

(Fig. 4) the accuracy of the estimated open time is 
better in the case of the nonlinear Hinkley and 
H.O.H.D. detectors than with the Bessel filter. 
Even worse is the peculiar dependence of the Bes- 
sel error (dash-dot-lines in Fig. 9) on the time reso- 
lution. With longer tres, which may be thought to be 
an "easier task" for the Bessel detector, the estima- 
tion error increases. This deteriorates the appar- 
ently good performance (Fig. 7) of the Bessel algo- 
rithm at long tres, because the low rate of false 
alarms is accompanied with a bad estimation of 
event length. 

So far, we have evaluated the estimated dwell- 
time of an opening, irrespective to a temporal shift 
of the whole opening event. In experiments with 
channels activated by external stimuli the jump time 
itself may be of interest. In this case, the determi- 
nistic delay of the Bessel filter (compare the recon- 
structed signal in Fig. 3E with the ORIGINAL sig- 
nal in Fig. 3A) becomes important and the results 
have to be corrected for this delay. The jump time 
estimation of the Hinkley detector and the 
H.O.H.D. is more exact and does not include a de- 
terministic delay. The superiority of the Hinkley 
detector and the H.O.H.D. is due to the separation 
between jump detection (influenced by t~e~) and esti- 
mation of the jump moment (independent of tre0- 

In order to study the estimation of event length 
with more than one channel under investigation, we 
have simulated two identical channels with one 
closed and one open state as shown in Eq. (11) and 

rate constants koc = 0.05, kco = 0.03 as used for Fig. 
3. The signal-to-noise ratio (white noise) is SNR = 3 
and the time resolution is tres = 3. This example is 
quite simple but nevertheless shows a typical error 
of the Bessel algorithm when more than one chan- 
nel, i.e., more than two levels are involved. 

The evaluation of the simulated data results in 
three dwell-time histograms (one for each level 0, 1, 
2) for each of the three detectors (BESSEL, 
HINKLEY, H.O.H.D.). All these nine dwell-time 
histograms start at bin t = 1 with an upward slope 
because of missed events. The maximum is found 
near the time resolution tres in the bins t = 3 or t = 4. 
The downward slope t > 6 is not affected by missed 
events. This range may be used for reliable expo- 
nential fits. In the histograms for the intermediate 
level 1, however, the BESSEL filter creates an ad- 
ditional peak at the maximum of the histogram. This 
peak may lead to the misinterpretation that an addi- 
tional, fast time constant is involved. Our simula- 
tions have shown that this effect arises from the 
following artifact: When two channels open (or 
close) nearly simultaneously the dwell-time in the 
intermediate level is very short, but the Bessel-fil- 
tered signal rises (or decays) somewhat slower than 
the original signal and stays longer in the interval 
related to level 1. This leads to an overestimation of 
short dwell-times of intermediate levels. The 
Hinkley detector and the H.O.H.D. do not have 
any difficulties because the two subsequent jump 
times are estimated by backward calculation, inde- 
pendent of the procedure of jump detection. 

Results from Real Data 

We applied the Hinkley, H.O.H.D. and Bessel algo- 
rithms to a record over 60 seconds from a droplet of 
Chara corallina, prepared as described in a pre- 
vious paper (Draber et al., 1991). The experimental 
solution contained 250 mM KC1 and 5 mM CaCI2. 
The current signal was sampled and AD-converted 
at 100 kHz. The time series contained 6,000,000 
sampled current values. At a voltage of V = 50 mV 
the single channel current was 9 pA, the standard 
deviation of noise was o- = 2.2 pA, resulting in a 
SNR of 4.1. Figure 1A shows an 80-msec part (8,000 
samples) of the data. 

Dwell-time histograms for each level of pipette 
current were produced by the three different detec- 
tors. At  dwell-times longer than 0.4 msec (40 sam- 
pling units) the three detection algorithms gave the 
same results, but there were also a lot of short 
events in the time series (Fig. 1A). The H.O.H.D. 
detected the highest amount of them. Figure 1B 
shows the H.O.H.D.-based dwell-time histogram of 
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the closed level (all channels closed). The fit of two 
exponentials yielded a fast time constant of 48/~sec 
which was, until now, beyond the time resolution of 
patch-clamp event detection. Results and adequate 
models will be presented in a subsequent paper. 

Discussion 

The detection algorithm for patch-clamp data has to 
provide the following features: 

(i) No waste of information: The time resolu- 
tion has to be as short as possible under the con- 
striction that no false alarms occur. In the presence 
of white noise the HINKLEY, H.O.H.D. and BES- 
SEL algorithms offer the same quality (Fig. 5). In 
real experiments the noise is not white. In this situa- 
tion the H.O.H.D. algorithm shows the best perfor- 
mance at high temporal resolution (Fig. 7). 

(ii) Sharp cutoff at given time resolution: For 
theoretical considerations (Blatz & Magleby, 1986; 
Crouzy & Sigworth 1990) of missed brief events, it 
is necessary that nearly all events longer than the 
selected time resolution are detected and all shorter 
events are not. With regard to this aspect, the 
H.O.H.D. and the BESSEL detection algorithms 
are superior to the HINKLEY detector (Fig. 8). 

(iii) Exact estimation of event duration: An un- 
reliable estimation of event length leads to a distor- 
tion of the dwell-time histograms. The Hinkley and 
the H.O.H.D. detectors estimate the event duration 
of detected events with the same algorithm, looking 
for minima and maxima of the cumulative sum. The 
results do not depend on the selected time resolu- 
tion and are very precise compared with the BES- 
SEL algorithm looking for threshold crossings. The 
determination of the event length by means of the 
Bessel filter is especially bad when a long time reso- 
lution is used (Fig. 9). 

These arguments lead to the conclusion that the 
H.O.H.D. is the best algorithm for reconstruction 
of patch-clamp data. 

In addition to the advantages presented of the 
nonlinear off-line H.O.H.D. algorithm over the lin- 
ear off-line BESSEL filter, we want to emphasize 
the general superiority of off-line analysis. Most 
workers use analog Bessel filters whose time resolu- 
tion has to be set a priori without knowing the sig- 
nal-to-noise ratio of the later experiment. The 
knowledge of SNR is required for the optimal set- 
ting of tre~ (setting of cutoff frequency). Moreover, 
when using different command voltages with one 
patch the signal-to-noise ratio changes during the 
experiment, and it is practically impossible to set 
the filter cutoff exactly to the edge of a tolerable 
false alarm rate. 

Therefore, we strongly recommend off-line 
analysis, preferably by means of the higher-order 
Hinkley detector, using an analog Bessel filter only 
for antialiasing. 

The program used here was written in Turbo 
Pascal (program listings available on request). On 
an 80386 personal computer with 20 MHz it takes 
about nine minutes to apply the H.O.H.D. to a time 
series of one million samples, depending slightly on 
the number of channels within the patch. 

This work emerged from a research project at Anschtitz & Co., 
Kiel, Germany, concerned with the detection of parameter 
jumps in a dynamic system, which is realized in cooperation with 
the Biophysics and System Identification Group at Kiel Univer- 
sity (Prof. Dr. U.-P. Hansen). We gratefully acknowledge the 
financial support and the computer capacities from Anschi)tz & 
Co. The experimental investigations were supported by the 
Deutsche Forschungsgemeinschaft (Ha 712/7-5). We are very 
grateful to Prof. Dr. Ulf-Peter Hansen who made this work possi- 
ble and accompanied it with helpful and critical discussions. The 
100 kHz data acquisition setup, including the tunable Bessel fil- 
ter, was built by Dipl.-Phys. Arne Albertsen. We thank Prof. Dr. 
Thomas Holzhfiter for hints to literature and for initiating the 
cooperation between university and industry. Dipl.-Phys. Chri- 
stian Ruge made valuable suggestions increasing the readability 
of the manuscript. We are grateful to Mrs. E. G6tting for drawing 
many of the figures. 
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